
1204 IEEE TBANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 11, NOVEMBER 1985

The Application of Planar Anistropy to
Millimeter-Wave Ferrite

Phase Shifters

STEPHEN B. THOMPSON, ~MBER, IEEE, AND G. P. RODRIGUE, FELLOW, IEEE

~fistract —The torque producedby the planar anistropy that occurs iu

some hexagonal ferrites is included in the equation of motion of the

magnetization. The elements of the permeability tensor, derived here for a

Iossless approximation, are affected by the planar anistropy in much the

same way as by an increase in saturation magnetization. This modified

permeability has been incorporated into a model for a planar ferrite loaded

rectangular wavegnide, and the calculated values for differential nonre-

ciprocal phase shift are found to increase substantially over those for a

conventional isotropic ferrite.

I. INTRODUCTION

T HE TERM “FERRITE” commonly applies to

materials with spinel, garnet, and hexagonal crystal

structures [1]. Over the past 30 years, these compounds

have been studied extensively and their properties opti-

mized for microwave device use [2]. Grain-oriented hexago-

nal ferrites with uniaxial anistropy have been developed for

use in isolators and circulators at millimeter-wave frequen-

cies [3], but no practical applications have yet been realized

for hexagonal ferrites with planar anistropy [4], and planar

materials are not now commercially available. It appears

that the natural attributes of planar ferrites maybe used to

advantage in switchable, remanent phase shifters. This

paper discusses the theory of their application to phasers at

millimeter-wave frequencies.

In conventional isotropic ferrite phase shifters, a figure

of merit is the ratio of saturation magnetization to operat-

ing frequency. Because the upper limit of saturation mag-

netization is -4.4 X105 A/m (5500 gauss), the perfor-

mance of millimeter-wave phasers declines with increasing

frequency. While the anisotropy of uniaxial ferrites can

replace the applied magnetic fields required for resonance

isolators, their use seems impractical for variable phase

shifters where the remanent magnetization must be switched

and varied to control the phase shift.

Planar ferrites with their plane of easy magnetization

oriented perpendicular to the direction of propagation of

EM waves seem to have natural advantages in such appli-

cations. These materials have not received the same degree

of attention accorded isotropic or uniaxial ferrites, and to
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Fig. 1. (a) Planar ferrite toroid. (b) Coordinate system used in describ-
ing planar anisotropy.

date the properties of these materials have not been so

highly developed.

II. PLANAR ANISOTROPY AND TENSOR

PERMEABILITY

Magnetic materials all exhibit an angular dependence of

their internal energy that is expressed in terms of an

anisotrop y energy. This energy has a symmetry reflecting

that of the unit cell of the particular crystal structure. In

hexagonal ferrites, the anisotropy energy may be mini-

mized when the magnetization is parallel to the C-axis

(uniaxial anisotropy) or when the magnetization lies in the

plane perpendicular to the C-axis (planar anisotropy). This

angular dependence of the anistropy energy is expressed

phenomenologically by

W~~=K1sin2fl +K2sin48+ . . . (1)

where K1 and K2 are first- and second-order anisotropy

constants ( K1 + 2 K2 being negative for planar materials)

and 8 is the angle between the C-axis and the magnetiza-

tion. Fig. 1 indicates the appropriate coordinate system.

Any directional dependent energy produces a torque

given by

– awAN
T~ =

88
= - (2K1 sindcos 13+4K, sin’ dcosf?).

(2)

For planar ferrites, the anisotropy energy causes the mag-

netization to remain near the plane described by 6 = 7r/2.
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Thus

sin$ =1.0 (3)

M
Coso=#

s
(4)

and

T~=–(2Kl+4KJ~ (5)
s

where MY is the y-component of M,.

From Fig. l(b), we see that the component of the magneti-

zation in the x – z plane, the hexagonal plane, is given by

fill = M,sinfl[cos @X + sinq~, ]. (6)

The effects of the anisotropy torque are modeled as arising

from an effective anisotropy field HA, also assigned to be

in the “easy” plane. Then the torque can be written as

~=M,xpogA. (7)

Written in the rectangular coordinates of Fig. l(b), this is

?= lMJ[sin6cos @iiX +cos OfiY +sinO sin@=]

XpO]H~l[cos+6X +Ofi, +sin@tl=] . (8)

Again, because the magnetization lies very near the easy

plane

sind=l

M
Cose=;

s

Mx kfx Mx
Cos+=—=

Mll M, sind = IM,l

and

M= M,
sin+=— —

Mll = IM,I “

Thus

MvH~
F=— ~ Po[Mz2x – Mx~zl. (9)

3

The torque of (9) is in the same direction as

that

that of (5), so

I-LOMy~~ = –(’2KI+%)%
or

-(2 K1+4K,)
HA=

POMS “

The usual equation of motion of the

(lo)

magnetization is

written as

ail –
—= T=–ly@7xE
6’t

(11)

where y is the gyromagnetic ratio.
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The effects of anisotropy can be added through the

anisotropy torque as

i?fti
—=-ly(tixpoti+~.l.

at
(12)

In component form for the case of ~, along the Z-axis

%= mxtlx + mYtiY + M#z (13)

~= liXt2X + hY~Y + Hot2z (14)

Ho= internal dc field. (15)

Inserting (9), (13), and (14) into (12) and assuming ex-

ponential time dependence for the RF fields, we obtain

jtimx = – lylpo[mYHo– M$hY+ H~mY] (16)

jam, = – lylpo[M,hx– mxHo] (17)

13 a
—m= = —MS
at 6?

[

HA 1~O ~ – Iylpo mxhY– mYhx – ~mpmx .
s

(18)

Neglecting the higher order terms in time varying quanti-

ties; mx and m ~ &-e found to be

IJolYIom(H~ + Ho) ju am
mx =

A
hx + —hv

A

where

(.Jo=polylHo

(h)m=
I PolYIMs

A=polyluo(Ho +H~)–u2.

The susceptibly matrix is then

where

POIYICU(HA + Ho)
xxx =

A

toam
xxy=–xyx=j~

and

(dOum

xyy=~.

(19)

(20)

(21a)

(21b)

(21C)

(22)

(23a)

(23b)

(23c)

Note that, for planar anisotropy, the diagonal elements of

the susceptibility tensor are not the same. We can define a

relative permeability as

[Pl=l+[xl (24)
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Fig. 2. Rectangular waveguide loaded with ferrite and dielectric.

and thus obtain

[P] =

where

P.. JK o
– jK /lyy o1 (25)

001

POIYI%(HA + Ho)
pxx=l+xxx=l+

A
(26a)

(JOUM
P =l+xyy=l+~

YY
(26b)

(26c)

Unlike the case of isotropic or uniaxial ferrites, I-LX.# pYY

for planar materials.

Planar Ferrite in Rectangular Waveguide

For the coordinate system shown in Fig. 2 and under the

assumption that the waveguide is excited by a TEIO mode,

the HX, HY, and E= components will be nonzero, while
Hz = EX = Ey = O. Maxwell’s curl equations can then be

written in component form as

– rEz = – jwOIPxx~x+ My] (27a)

– aEz
— .

ax
– jwo[–M.+ Py.,~y](27b)

– ahy
— .

az
o

ah*
—=0
az

ahy
— + rhX = jucEz.
ax

(28a)

(28b)

(28c)

H~ it is assumed that all fields propagate as e- ‘Y and

— = – r. Through the usual manipulation of these curl
ay

equations, they can be cast as a wave equation in E=

~+[*+”2’’’’(’xx:K2
(29)

The results of this derivation can be simplified by defin-

ing some of the following terms:

P..p= (30)
P..PYY – K2

e=% (31)
JK

+ – ~yy (32)
IJxx “

Now, we can rewrite (29) as

:+[r2*+%lE”0(33)

The magnetic fields can be expressed in terms of the

electric field as

where we define

(34)

(35)

(36)

Note that ~ is a measure of asymmetry introduced by

planar anisotropy. If HA= O, ~ =1.

Equations (33)–(35) may be applied to a dielectric re-

gion by noting that for nonmagnetic material

Um=o

IJl .
xx

pyy=l

K=O

o=–j~

p=l

$=1.

For a dielectric region

a’fiz
—+[r2i-a2p06]~z=o
ax 2

1 aEz
hy=— —

jtipo ax

1
hx = —Ez

jop o

(37)

(38)

(39)

(40)



THOMPSON AND RODIUGUE : MILLIMETER-WAVE FERR,TE PHASE SHIFTERS 1207

and

k;= 1’2 + U2pOC. (41)

Fig. 2 illustrates a rectangular wavegqide loaded with

dielectric and ferrite materials. The form of E, in the three

regions is

Ezl = A(cosk~x)e-r~ (42a)

E,z = [BeJ~mx + Ce-J~~x]e-r-V (42b)

E,q = [Dsinka(x – x~)]e-rp (42c)

where

k~= rz+ tifLocoEa (43a)

k;= r2 + @.locoEd. (43C)

The transverse operator method utilizes the fact that the

fields in the various regions of the waveguide can be

related by transfer matrices [5]–[7]. The transfer matrices

relate the E= and h ~ fields at one boundary of a medium to

those at the other boundary along transverse directions in

the waveguide. Thus, we can relate the fields at points xl

and X2 by

[:]X1=[::][:;]x,(44)

Because tangential E and H fields are continuous at

boundaries, the transfer matrices can be multiplied to

obtain a transfer matrix for the entire waveguide that

relates the tangential fields of many regions. Fig. 2 il-

lustrates the geometry for the problem with which we are

concerned. Assuming the guide to be symmetric about the

center, we need consider only half of the guide as shown.

Then

(45)

[qwd,=[::ltota[:]cen,e;
(46)

Applying the boundary condition, 2 x ~ = O, at the wave-

guide wall, we conclude that E,(wall) = O. Also, for TEIO

propagation in rectangular waveguide, the longitudinal

component of magnetic field vanishes at the cefiter of the

guide, HY(center) = O. Thus, we obtain

[:YL,=K!%t?l%nt,, ’47)
or

O = AEZ<

h,w= CEZC.

Because Ezcen,crdoes not vanish, then A must equal zero.

The A, B, C, and D parameters for the transfer matrix

of any medium can be obtained by utilizing the equations

for E, and h} of that particular medium. For a ferrite

medium, they are found to be

– jcdpo
B= sin k~8f

pk~

(48)

(49)

‘[ 1–r2
c=~ — – k; sin kJf

62
(50)

~Pokm

r
D ‘: COS kJIf – — sink J3j.

kJ’
(51)

In a dielectric region, p =1 and 0 = – jco, and the ele-

ments become

A = COS k#~ (52)

– jtdpo
B=

k~
sin kd~~ (53)

(54)

(55)

III. RESULTS

Phase shifters are normally made of a ferrite toroid with

a core of dielectric. Fig. 2 illustrates a slab of dielectric

sandwiched by slabs of ferrite. This model can be applied

to the toroid configuration because the RF fields at the top

and bottom of the toroid are essentially parallel to the

direction of magnetization. For remanence state phasers,

the internal dc field vanishes; thus, Ho= O and (26a, b,

and c) become

IJolYl%tH,4
pxx=l–

02
(56a)

pyy = 1 (56b)

(56c)

These approximate representations of the ferrite material

can be used in (30)–(32) to determine p, 0, and +. In turn
then, k., km, and k~ are obtained from (43), and the

elements of the transfer matrices from (48)–(55). With

given values for widths of air, ferrite, and dielectric regions,

the propagation constant r is determined to be that value

necessary to cause the A element of the overall transfer

matrix to vanish.
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TABLE I

COMPUTED DIFFERENTIAL PHASE SHIFT FOR VARIOUS
FREQUENCIES AND MATERIAL PROPERTIES

Freq. 4TM H4 A+
(GHz) (g) (Oe) (deg/cm. GHz)

35 3500 12000 11.14
35 3500 0 4.67
35 5500 0 7.6
50 3500 12000 6.22
50 3500 0 3.23
50 5500 0 5.17

13fl= 0.13A0, & = 0.04 AO, 8,= 0.08A0, C, =<d =16.

As a specific example of the geometry of Fig. 2, consider

as typical values

f=35

a = 0.5A

b = 0.294~

c 3 x 1010

‘=7=35 xlo9=0”857cm

Ca =1.0

cd =16

– 16Ef —

Results of sample calculations are tabulated in Table I.

The computed differential phase shift is the difference

between the computed propagation constants r(+) and
r ~_, for the two states of magnetization, corresponding to

positive and negative signs for K. Absolute differential

phase shift can be obtained from the normalized values

presented by multiplying by length (in cm) and operating

frequency (in GHz). A planm anisotropy field of 12000 Oe

in a material with 4 Tll = 3500 g almost triples the com-

puted differential phase shift found for an isotropic ferrite.

These results indicate that the planar anisotropy increases

differential phase shift as an increase in magnetization

does, or as an applied magnetic field would.

It should be noted that this material is still far removed

from ferromagnetic resonance and its attendant losses.

Resonance would occur at a frequency of about 13.5 GHz,

more than 20 GHz below the operating frequency.

Shown in Fig. 3 is a plot of computed differential phase

shift as a function of normalized anisotropy field (MA =

yH~ /o) for a fixed geometry and for a frequency of 9

GHz. This was run to verify the computer program with
known results for an isotropic ferrite at 9 GHz [7] with

8f = 0.08A0, ad= 0.04A0, 8.= 0.13A0, and cd= Cf =16. (A.

represents c/f at 9 GHz). The point at MA = O agrees

exactly with results for isotropic ferrites, 6.84 “/cm. GHz,

or 156 “/in at 9 GHz. The apparent effect of the planar

anisotropy field is quite large, but only relatively low

values of MA have any relevance here. For MA near 4.0,

the material undergoes ferromagnetic resonance, and the

permeability of a + cp wave becomes negative near Mxt =

2.5. For a 35-GHz frequency, however, a planar anisotropy

field of 11000 Oe corresponds to an MA value of 0.96,

which this calculation indicates would more than double

Fig. 3.
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Computed differential phase shift versus plauar auisotropy field.

the differential phase shift. This result is consistent with

those of Table I for 35 Ghz.
A planar anisotropy field will also alter the optimum

polarization, and therefore the optimum geometry, for

differential phase shift. Figs. 4 and 5 show curves repre-

senting the computed differential phase shift versus the

normalized ferrite width for isotropic and planar ferrites,

respectively. The width of the dielectric rib is the parame-

ter in each set of curves. For these curves

~.= 35 GHz

47M = 3500 gauss

Waveguide dimensions were set at a = 0.428 cm and b =

0.252 cm.

The isotropic ferrite (Fig. 4) shows a maximum in dif-

ferential phase shift at a ferrite width that produces ap-

proximately circular polarization of RF magnetic fields in

the ferrite region. For the planar material, Fig. 5 indicates
further increase in differential phase shift with increasing

ferrite width, where the RF magnetic fields will be more

elliptically polarized. Of course, a truly optimum geometry

could only be determined after the effects of dielectric,

magnetic, and ohmic loss are included.

IV. CONCLUSION

The theory developed here and the computer-aided

calculations of differential phase shift show that a planar

anisotropy field could be used to increase substantially the
phase shift in a ferrite-loaded rectangular waveguide. Re-

sults also indicate that the planar anisotropy alters the
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Fig. 4. Differential phase shift versus ferrite thickness with dielectric
thickness as a parameter. These curves are for am isotropic ferrite with
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Fig. 5. Differential phase shift versus ferrite thickness with dielectric
thickness as a parameter. These curves are for a planar material with
HA =12 000 Oe and 4~M, = 3500 g.
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polarization condition for optimum performance, and

therefore the optimum ferrite and dielectric geometry.

These results offer some promise to meet the needs of

millimeter-wave phase shifters where maximum realizable

magnetization currently limits performance. However, at

this time, planar hexagonal materials are not available on

the open market.
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